Know Your Mind: Adaptive Brain Signal Classification with Reinforced Attentive Convolutional Neural Networks

نویسندگان

  • Xiang Zhang
  • Lina Yao
  • Xianzhi Wang
  • Wenjie Zhang
  • Zheng Yang
  • Yunhao Liu
چکیده

Electroencephalography (EEG) signals reƒect activities on certain brain areas. E‚ective classi€cation of time-varying EEG signals is still challenging. First, EEG signal processing and feature engineering are time-consuming and highly rely on expert knowledge. In addition, most existing studies focus on domain-speci€c classi€cation algorithms which may not be applicable to other domains. Moreover, the EEG signal usually has a low signal-to-noise ratio and can be easily corrupted. In this regard, we propose a generic EEG signal classi€cation framework that accommodates a wide range of applications to address the aforementioned issues. Œe proposed framework develops a reinforced selective aŠention model to automatically choose the distinctive information among the raw EEG signals. A convolutional mapping operation is employed to dynamically transform the selected information to an over-complete feature space, wherein implicit spatial dependency of EEG samples distribution is able to be uncovered. We demonstrate the e‚ectiveness of the proposed framework using three representative scenarios: intention recognition with motor imagery EEG, person identi€cation, and neurological diagnosis. Œree widely used public datasets and a local dataset are used for our evaluation. Œe experiments show that our framework outperforms the state-of-the-art baselines and achieves the accuracy of more than 97% on all the datasets with low latency and good resilience of handling complex EEG signals across various domains. Œese results con€rm the suitability of the proposed generic approach for a range of problems in the realm of Brain-Computer Interface applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Detection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals

Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03996  شماره 

صفحات  -

تاریخ انتشار 2018